Spatial-Temporal Attentive LSTM for Vehicle-Trajectory Prediction

نویسندگان

چکیده

Vehicle-trajectory prediction is essential for intelligent traffic systems (ITS), as it can help autonomous vehicles to plan a safe and efficient path. However, still challenging task because existing studies have mainly focused on the spatial interactions of adjacent regardless temporal dependencies. In this paper, we propose spatial-temporal attentive LSTM encoder–decoder model (STAM-LSTM) predict vehicle trajectories. Specifically, attention mechanism used capture relationships among neighboring then obtain global feature. Meanwhile, designed distinguish effects different historical time steps future trajectory prediction. addition, motion feature extracted reveal influence dynamic information vehicle-trajectory prediction, combined with local features represent integrated target at each moment. The experiments were conducted public highway datasets—US-101 I-80 in NGSIM—and results demonstrate that our achieves state-of-the-art performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequence-to-Sequence Prediction of Vehicle Trajectory via LSTM Encoder-Decoder Architecture

In this paper, we propose a deep learning-based vehicle trajectory prediction technique which can generate the future trajectory sequence of the surrounding vehicles in real time. We employ the encoder-decoder architecture which analyzes the pattern underlying in the past trajectory using the long short term memory (LSTM)-based encoder and generates the future trajectory sequence using the LSTM...

متن کامل

Vehicle Trajectory Estimation Using Spatio-Temporal MCMC

This paper presents an algorithm for modeling and tracking vehicles in video sequences within one integrated framework. Most of the solutions are based on sequential methods that make inference according to current information. In contrast, we propose a deferred logical inference method that makes a decision according to a sequence of observations, thus processing a spatio-temporal search on th...

متن کامل

Trajectory Optimization for a Multistage Launch Vehicle Using Nonlinear Programming

This work is an example of application of nonlinear programming to a problem of three-dimensional trajectory optimization for multistage launch vehicles for geostationary orbit missions. The main objective is to minimize fuel consumption or equivalently to maximize the payload. The launch vehicle considered here, Europa-II, consists of 5 thrust phases and 2 coast phases. Major parameters of the...

متن کامل

Soft + Hardwired Attention: An LSTM Framework for Human Trajectory Prediction and Abnormal Event Detection

As humans we possess an intuitive ability for navigation which we master through years of practice; however existing approaches to model this trait for diverse tasks including monitoring pedestrian flow and detecting abnormal events have been limited by using a variety of hand-crafted features. Recent research in the area of deeplearning has demonstrated the power of learning features directly ...

متن کامل

Applying Deep Bidirectional LSTM and Mixture Density Network for Basketball Trajectory Prediction

Data analytics helps basketball teams to create tactics. However, manual data collection and analytics are costly and ineffective. Therefore, we applied a deep bidirectional long short-term memory (BLSTM) and mixture density network (MDN) approach. This model is not only capable of predicting a basketball trajectory based on real data, but it also can generate new trajectory samples. It is an e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ISPRS international journal of geo-information

سال: 2022

ISSN: ['2220-9964']

DOI: https://doi.org/10.3390/ijgi11070354